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Exercise 1. We have already seen in class the result in the easy cases. Let us assume that 1 < r < ∞,
and write

|f(x − y)g(y)| = h(x, y)k(x, y),

where h(x, y) = |f(x − y)|α|g(y)|β and k(x, y) = |f(x − y)|1−α|g(y)|1−β . We will take α = p

r
and β = q

r
.

By Fubini’s theorem, we get ∫
Rd×Rd

|h(x, y)|rdx dy = ∥f∥p
Lp(Rd) ∥g∥q

Lq(Rd) .

On the other hand, we have

k(x, y)r′
= |f(x − y)|

p
s |g(y)|

q
t ,

where

1
s

= r′
(

1
p

− 1
r

)
1
t

= r′
(

1
q

− 1
r

)
.

Since

1
s

+ 1
t

= r′
(

1
p

+ 1
q

− 2
r

)
= r′

(
1 − 1

r

)
= 1,

we can apply Hölder’s inequality again to get∫
Rd

k(x, y)r′
dy ≤ ∥f(x − · )∥

p
s

Lp(Rd) ∥g∥
q
t

Lq(Rd) .

Finally, we have by Hölder’s inequality

|f(x − y)g(y)| ≤ ∥h(x, · )∥Lr(Rd) ∥k(x, · )∥Lr′ (Rd) ≤ ∥h(x, · )∥Lr(Rd)

(
∥f(x − · )∥

p
s

Lp(Rd) ∥g∥
q
t

Lq(Rd)

) 1
r′

and this implies the inequality by integration |f(x − y)g(y)|r and using the previous inequality.

Exercise 2. 1. Indeed, we have by Fubini’s theorem∫
B

∫
B

(u(x) − u(y))2dxdy =
∫

B

∫
B

(
u2(x) − 2u(x)u(y) + u2(y)

)
dxdy

= 2|B|
∫

B

u2dx − 2
(∫

B

u(x)dx

)(∫
B

u(y)dy

)
= 2|B|

∫
B

u2dx.

2. Indeed, we have

(u(x) − u(y))2 ≤ |x − y|2
∫ 1

0
|∇u(tx + (1 − t)y)|2dt ≤ (2r)2

∫ 1

0
|∇u(tx + (1 − y)y)|2dt.

and ∫
B

1tB+(1−t)y(z)dy =
∣∣∣∣B ∩ 1

1 − t
(z − t B)

∣∣∣∣ ≤ min
{

1,
td

(1 − t)d

}
|B|.
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3. We have ∫
B×B

|∇u(tx + (1 − t)y)|2dxdy = 1
td

∫
B

∫
tB+(1−t)y

|∇u(z)|2dzdy

= 1
td

∫
B

∫
B

1tB+(1−t)y(z)|∇u(z)|2dzdy

≤ |B|
(∫ 1

0
min

{
1,

td

(1 − t)d

}
dt

td

)∫
B

|∇u|2dx.

The first integral (which is finite since the function is uniformly bounded) furnishes the given
constant.

4. Just apply the previous argument to u − uB .

Exercise 3. Using Parseval identity, we deduce that∫
Rd

|f(x) − f(y)|2

|x − y|d+2s
dxdy =

∫
Rd

|f(x) − f(x + z)|2

|z|d+2s
dxdz

= 1
(2π)d

∫
Rd

∥F (f − f( · + z))∥2
L2(Rd)

|z|d+2s
dz

= 1
(2π)d

∫
Rd

∫
Rd

|f̃(ξ)|2 |1 − ei z·ξ|2

|z|d+2s
dz dξ.

Consider the function

G(ξ) =
∫
Rd

|1 − ei ξ·z|2

|z|d+2s
dz.

We easily show that G is invariant under rotations (elements of O(d)) and that for all ξ ∈ Rd and λ > 0,
we have G(λ ξ) = λ2sG(ξ). Therefore, we deduce that G(ξ) = G(0)|ξ|2s, and this implies that∫

Rd

|f(x) − f(y)|2

|x − y|d+2s
dxdy = G(0)

(2π)d

∫
Rd

|ξ|2s|f̃(ξ)|2dξ,

which shows the equivalence (and the equivalent of norms).

Exercise 4. 1. Indeed, it follows from Parseval identity since F (∆u) = −|ξ|2û and F (∂xj
∂xk

u) =
−ξjξj û. Here, we can take C1 = 1.

2. By the Sobolev embedding, for all u ∈ H2(R3), we have

∥u∥L∞(R3) ≤ CS

(
∥∇u∥L2(R3) +

∥∥∇2u
∥∥

L2(R3)

)
≤ C

(
∥∇u∥L2(R3) + ∥∆u∥L2(R3)

)
.

If we apply this inequality to uλ = u(λ ·), we get by an immediate change of variable

∥u∥L∞(R3) = ∥uλ∥L∞(R3) ≤ CS

(
1√
λ

∥∇u∥L2(R3) +
√

λ ∥∆u∥L2(R3)

)
.

Therefore, assuming that u is not constant (in which case the inequality is trivial), we can take

λ =
∥∇u∥L2(R3)

∥∆u∥L2(R3)
to conclude the proof.
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