

Exercise 1. We have already seen in class the result in the easy cases. Let us assume that $1 < r < \infty$, and write

$$|f(x - y)g(y)| = h(x, y)k(x, y),$$

where $h(x, y) = |f(x - y)|^\alpha |g(y)|^\beta$ and $k(x, y) = |f(x - y)|^{1-\alpha} |g(y)|^{1-\beta}$. We will take $\alpha = \frac{p}{r}$ and $\beta = \frac{q}{r}$. By Fubini's theorem, we get

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} |h(x, y)|^r dx dy = \|f\|_{L^p(\mathbb{R}^d)}^p \|g\|_{L^q(\mathbb{R}^d)}^q.$$

On the other hand, we have

$$k(x, y)^{r'} = |f(x - y)|^{\frac{p}{s}} |g(y)|^{\frac{q}{t}},$$

where

$$\frac{1}{s} = r' \left(\frac{1}{p} - \frac{1}{r} \right) \quad \frac{1}{t} = r' \left(\frac{1}{q} - \frac{1}{r} \right).$$

Since

$$\frac{1}{s} + \frac{1}{t} = r' \left(\frac{1}{p} + \frac{1}{q} - \frac{2}{r} \right) = r' \left(1 - \frac{1}{r} \right) = 1,$$

we can apply Hölder's inequality again to get

$$\int_{\mathbb{R}^d} k(x, y)^{r'} dy \leq \|f(x - \cdot)\|_{L^p(\mathbb{R}^d)}^{\frac{p}{s}} \|g\|_{L^q(\mathbb{R}^d)}^{\frac{q}{t}}.$$

Finally, we have by Hölder's inequality

$$|f(x - y)g(y)| \leq \|h(x, \cdot)\|_{L^r(\mathbb{R}^d)} \|k(x, \cdot)\|_{L^{r'}(\mathbb{R}^d)} \leq \|h(x, \cdot)\|_{L^r(\mathbb{R}^d)} \left(\|f(x - \cdot)\|_{L^p(\mathbb{R}^d)}^{\frac{p}{s}} \|g\|_{L^q(\mathbb{R}^d)}^{\frac{q}{t}} \right)^{\frac{1}{r'}}$$

and this implies the inequality by integration $|f(x - y)g(y)|^r$ and using the previous inequality.

Exercise 2. 1. Indeed, we have by Fubini's theorem

$$\begin{aligned} \int_B \int_B (u(x) - u(y))^2 dx dy &= \int_B \int_B (u^2(x) - 2u(x)u(y) + u^2(y)) dx dy \\ &= 2|B| \int_B u^2 dx - 2 \left(\int_B u(x) dx \right) \left(\int_B u(y) dy \right) \\ &= 2|B| \int_B u^2 dx. \end{aligned}$$

2. Indeed, we have

$$(u(x) - u(y))^2 \leq |x - y|^2 \int_0^1 |\nabla u(tx + (1-t)y)|^2 dt \leq (2r)^2 \int_0^1 |\nabla u(tx + (1-t)y)|^2 dt.$$

and

$$\int_B \mathbf{1}_{tB + (1-t)y}(z) dy = \left| B \cap \frac{1}{1-t}(z - tB) \right| \leq \min \left\{ 1, \frac{t^d}{(1-t)^d} \right\} |B|.$$

3. We have

$$\begin{aligned} \int_{B \times B} |\nabla u(tx + (1-t)y)|^2 dx dy &= \frac{1}{t^d} \int_B \int_{tB + (1-t)y} |\nabla u(z)|^2 dz dy \\ &= \frac{1}{t^d} \int_B \int_B \mathbf{1}_{tB + (1-t)y}(z) |\nabla u(z)|^2 dz dy \\ &\leq |B| \left(\int_0^1 \min \left\{ 1, \frac{t^d}{(1-t)^d} \right\} \frac{dt}{t^d} \right) \int_B |\nabla u|^2 dx. \end{aligned}$$

The first integral (which is finite since the function is uniformly bounded) furnishes the given constant.

4. Just apply the previous argument to $u - \bar{u}_B$.

Exercise 3. Using Parseval identity, we deduce that

$$\begin{aligned} \int_{\mathbb{R}^d} \frac{|f(x) - f(y)|^2}{|x - y|^{d+2s}} dx dy &= \int_{\mathbb{R}^d} \frac{|f(x) - f(x+z)|^2}{|z|^{d+2s}} dx dz \\ &= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{\|\mathcal{F}(f - f(\cdot + z))\|_{L^2(\mathbb{R}^d)}^2}{|z|^{d+2s}} dz \\ &= \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |\tilde{f}(\xi)|^2 \frac{|1 - e^{i z \cdot \xi}|^2}{|z|^{d+2s}} dz d\xi. \end{aligned}$$

Consider the function

$$G(\xi) = \int_{\mathbb{R}^d} \frac{|1 - e^{i \xi \cdot z}|^2}{|z|^{d+2s}} dz.$$

We easily show that G is invariant under rotations (elements of $O(d)$) and that for all $\xi \in \mathbb{R}^d$ and $\lambda > 0$, we have $G(\lambda \xi) = \lambda^{2s} G(\xi)$. Therefore, we deduce that $G(\xi) = G(0)|\xi|^{2s}$, and this implies that

$$\int_{\mathbb{R}^d} \frac{|f(x) - f(y)|^2}{|x - y|^{d+2s}} dx dy = \frac{G(0)}{(2\pi)^d} \int_{\mathbb{R}^d} |\xi|^{2s} |\tilde{f}(\xi)|^2 d\xi,$$

which shows the equivalence (and the equivalent of norms).

Exercise 4. 1. Indeed, it follows from Parseval identity since $\mathcal{F}(\Delta u) = -|\xi|^2 \hat{u}$ and $\mathcal{F}(\partial_{x_j} \partial_{x_k} u) = -\xi_j \xi_k \hat{u}$. Here, we can take $C_1 = 1$.

2. By the Sobolev embedding, for all $u \in H^2(\mathbb{R}^3)$, we have

$$\|u\|_{L^\infty(\mathbb{R}^3)} \leq C_S \left(\|\nabla u\|_{L^2(\mathbb{R}^3)} + \|\nabla^2 u\|_{L^2(\mathbb{R}^3)} \right) \leq C \left(\|\nabla u\|_{L^2(\mathbb{R}^3)} + \|\Delta u\|_{L^2(\mathbb{R}^3)} \right).$$

If we apply this inequality to $u_\lambda = u(\lambda \cdot)$, we get by an immediate change of variable

$$\|u\|_{L^\infty(\mathbb{R}^3)} = \|u_\lambda\|_{L^\infty(\mathbb{R}^3)} \leq C_S \left(\frac{1}{\sqrt{\lambda}} \|\nabla u\|_{L^2(\mathbb{R}^3)} + \sqrt{\lambda} \|\Delta u\|_{L^2(\mathbb{R}^3)} \right).$$

Therefore, assuming that u is not constant (in which case the inequality is trivial), we can take $\lambda = \frac{\|\nabla u\|_{L^2(\mathbb{R}^3)}}{\|\Delta u\|_{L^2(\mathbb{R}^3)}}$ to conclude the proof.