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Exercise 1. We have already seen in class the result in the easy cases. Let us assume that 1 < r < oo,
and write

where h(z,y) = |f(z — y)|*|9(y)|? and k(z,y) = |f(z —y)|*~¥|g(y)|*~#. We will take o = g and 8 = %

By Fubini’s theorem, we get
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On the other hand, we have
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we can apply Holder’s inequality again to get
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Finally, we have by Hélder’s inequality
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and this implies the inequality by integration |f(z — y)g(y)|" and using the previous inequality.

Exercise 2. 1. Indeed, we have by Fubini’s theorem
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2. Indeed, we have
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and
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3. We have
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The first integral (which is finite since the function is uniformly bounded) furnishes the given
constant.
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4. Just apply the previous argument to v — up.

Exercise 3. Using Parseval identity, we deduce that
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We easily show that G is invariant under rotations (elements of O(d)) and that for all ¢ € R% and A > 0,
we have G(A &) = A2G(€). Therefore, we deduce that G(£) = G(0)[£]?%, and this implies that

i ety = S5 [ 11 pac

which shows the equivalence (and the equivalent of norms).

Consider the function

Exercise 4. 1. Indeed, it follows from Parseval identity since .7 (Au) = —|¢|?T and F (0,,0,,u) =
—&;&;u. Here, we can take Cy = 1.

2. By the Sobolev embedding, for all u € H?(R?), we have
Jullym ) < Cs (IVUllLas) + 1920l ey ) < € (Ve sy + 1Aul2gs) ) -

If we apply this inequality to uy = u(\-), we get by an immediate change of variable

1
[ullee sy = uallpe sy < Cs (ﬁ V|2 sy + \/XHAUHL%R?’)) :

Therefore, assuming that u is not constant (in which case the inequality is trivial), we can take

Vu
= H”ﬂ to conclude the proof.
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